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A B S T R A C T

We report the effect of ionic liquids on chemically synthesized hierarchical-like copper oxide (CuO) thin films for
supercapacitor applications. Concisely, the CuO thin films were deposited via chemical bath deposition (CBD)
using 2-dimethylimidazolium chloride [HPDMIM(C1)], 1-(2′,3′-dihydroxypropyl)-3-methylimidazolium
chloride [DHPMIM(C1)], and N-(3-methyl-2-oxopropyl)pyridine chloride [MOCPP(C1)] ionic liquid solvents.
The effects of the ionic liquid solvents on the morphological evolution of the as-prepared films were analyzed,
and electrochemical properties were investigated. The highest specific capacitance was achieved for the elec-
trode with a nanosheet-like structure produced by functionalization with the HPDMIM(C1) ionic liquid. The
maximum specific capacitance achieved for the HPDMIM(C1):CuO hybrid electrode was 464 F g−1 at 5 mV s−1

in a 1M Na2SO4 electrolyte. Thus, our findings, in addition to the stability of the HPDMIM(C1):CuO, indicate
that it is a candidate for energy-storage applications.

1. Introduction

Increasing worldwide energy demand has played a catalytic role in
the advancement of several energy storage technologies [1]. Two of the
most important factors in energy storage research is renewability and
sustainability [1–4]. Many researchers are currently focusing on ad-
dressing problems regarding energy storage technologies such as bat-
teries and supercapacitors [4–9]. The main motivation in the case of
supercapacitors is to improve their performance because these devices
can supply very high power compared with batteries and other elec-
tronic devices [1–6]. Supercapacitors are distributed into three core
types: electrochemical-double-layer capacitors, pseudocapacitors, and
hybrid capacitors [1,5–9]. All three supercapacitor types have high
charge–discharge rates, high power densities, long lifecycles, and safe
operating processes [2,2,3,4].

Copper oxides are useful in various applications involving hetero-
geneous catalysis [5–9], gas sensing [10], photoelectrochemical cells

[11], and supercapacitors [12]. They have been extensively in-
vestigated as an electrochemical material for supercapacitors because of
their high abundance in the earth’s crust, low cost, low toxicity, and
good charge transport properties, all of which are beneficial in super-
capacitor applications. The copper oxide are two common phases likes
copper (II) oxide (CuO) and copper (I) oxide (Cu2O) [13–15]. Different
CuO nanostructures have been prepared and applied in supercapacitors,
including flower [16,17] and nanoflakes [18], willow-leaves [19],
micro-roses and micro-wool [20], nanosheets [21,22], nanospheres
[23], nanoplatelets [24], nanowires [25], nanoribbons and nanoflowers
[26], dandelion-like CuO microspheres [27], and nanorods [28].

Several methods have been used to prepare CuO and Cu2O elec-
trodes for supercapacitors [29–35]. Ghasemi et al. [36] reported using
electrodeposited Cu2O–Cu(OH)2 nanoparticles as a supercapacitor
electrode material. They attained a specific capacitance 425 F g−1 in
0.5 M Na2SO4 electrolyte. Li et al. [37] synthesized CuO thin films and
its different nanostructures using thermal method. He reported a
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specific capacitance of 212 F g−1 in a KOH electrolyte for CuO thin
films. However, the literature contains few reports on the use of Cu2O in
supercapacitor electrodes. Patake et al. [38] produced Cu2O thin films
by electrodeposition for supercapacitors application and attained a
specific capacitance of 36 F g−1. Dong et al. [39] prepared Cu2O thin
films on copper foil for supercapacitor applications, resulting in an
electrode with a maximum specific capacitance of 862 F g−1 after 20
cycles. Hence, copper oxide thin films with different morphologies have
been used as supercapacitor electrodes, and the effects of the different
nanostructures on their supercapacitive performance have been re-
ported.

In this paper, we report on an important aspect of supercapacitor
applications, wherein nanostructure morphology is improved using
different ionic liquids. In particular, the effects of the ionic liquids 2-
dimethylimidazolium chloride [HPDMIM(C1)], 1-(2′,3′-dihydrox-
ypropyl)-3-methylimidazolium chloride [DHPMIM(C1)], N-(3-methyl-
2-oxopropyl)pyridine chloride [MOCPP(C1)] on the morphological
evolution and pseudocapacitive performance CuO thin-film super-
capacitor electrodes synthesized through a chemical bath deposition
(CBD) method is studied. The effect of the ionic liquids on the phy-
siochemical properties of these CuO nanosheets films was investigated
through various analysis techniques such as X-ray diffraction (XRD), X-
ray photoelectron spectroscopy (XPS), scanning electron microscopy
(SEM), and Fourier transform infrared (FT-IR) spectroscopy. The su-
percapacitive properties of CuO nanosheet electrodes functionalized
with [HPDMIM(C1)], [DHPMIM(C1)], and [MOCPP(C1)] were in-
vestigated through cyclic voltammetry (CV), galvanostatic charge–-
discharge, and electrochemical impedance spectroscopy (EIS) techni-
ques.

2. Experimental details

2.1. Materials

Copper(II) sulfate (CuSO4), sodium sulfate (Na2SO4), ammonia
(NH3), 5H2O, 2-dimethylimidazolium chloride [HPDMIM(C1)], 1-(2′,3′-
dihydroxypropyl)-3-methylimidazolium chloride [DHPMIM(C1)], N-(3-
methyl-2-oxopropyl)pyridine chloride [MOCPP(C1)] were purchased
from SD-Fine Chem.

2.2. Preparation of CuO

Pure CuO, HPDMIM(C1):CuO, DHPMIM(C1):CuO, and MOCPP
(C1):CuO thin films were deposited through CBD. Briefly, a 100mL
aqueous solution of 0.1 M CuSO4 was used as the copper source and
aqueous ammonia was used as a complexing agent [40–42]. The final
concentration of the ionic liquids was 0.1 mM for HPDMIM(C1),
DHPMIM(C1), and MOCPP(C1). The resulting pH of the solutions was
˜11 after 3.5 mL of ammonia was added. Prepared conducting stainless
steel (SS) substrate was immersed in the solutions, and the bath was
then heated to 342 K to initiate precipitation. Upon precipitation, the
heterogeneous reaction on the SS substrate led to deposition of copper
oxide after 40min [43]. The stainless steel substrate treated with CuO
films was washed with double-distilled water, air-dried, and used for
further analysis.

2.3. Characterization

Structural analyses of pure CuO, HPDMIM(C1):CuO, DHPMIM
(C1):CuO, and MOCPP(C1):CuO samples were performed using a
Philips PW-3710 X-ray diffractometer equipped with a Cu Kα radiation
source (λ=1.54 Å). XPS was carried out using a VG Multilab 2000
(Thermo VG Scientific, UK), and the film surface morphology was ob-
served by field-emission scanning electron microscopy (FE-SEM, Nova
NanoSEM 200).

2.4. Electrolyte preparation for electrochemical measurements

To examine the supercapacitor performance, CV and galvanostatic
charge–discharge measurements were conducted using a CH
Instruments CHI-600D electrochemical workstation with a conven-
tional three-electrode system. We used as-prepared CuO, HPDMIM
(C1):CuO, DHPMIM(C1):CuO, and MOCPP(C1):CuO as working elec-
trodes with unit dimensions of 1× 1 cm2, platinum as a counter elec-
trode, and a Ag/AgCl electrode as a reference electrode in a 1M Na2SO4

aqueous electrolyte solution. EIS was carried out using a ZIVE SP5
electrochemical workstation.

3. Results and discussion

3.1. Crystal structure studies

XRD was used for the structural analysis and phase identification of
the as-synthesized CuO thin films. Fig. 1(a–d) displays the XRD patterns
of the pure CuO thin film and the CuO samples functionalized with
different ionic liquids. The XRD patterns show no impurity peaks,
confirming the phase purity of the samples. The observed peak posi-
tions were matched to those of the pure monoclinic phase of CuO
(JCPDS card No. 48-1548); specifically, the diffraction peaks at 34.89°,
38.15°, 49.90°, and 73.90° were indexed to the (002), (111), (112), and
(004) planes, respectively [44,45]. The phase purity of all of the sam-
ples confirmed that the ionic liquids are useful for modifying the mi-
crostructure of the CuO thin films. The crystallite size (D) of all the CuO
samples was calculated from their respective XRD patterns using the
Scherrer relation (1):

=D 0.9λ
βcosθ (1)

where β is the full-width at half-maximum (FWHM) and λ =1.54056 Å,
the wavelength of the Cu Kα-rays. The D values of the different CuO thin
films are shown in Table 1. The results indicate that, compared with the
D values in the pure CuO films that in the CuO films functionalized with
an ionic liquid decreased. Therefore, the treatment with ionic liquid
increased the specific surface area of the films. On the basis of the XRD
results, we concluded that the ionic liquids did not disturb the struc-
tural properties of the CuO thin films [43,45].

Fig. 1. XRD patterns of the (a) pure, ionic liquid functionalized with (b)
HPDMIM (C1), (c) DHPMIM (C1), (d) MOCPP (C1) with CuO thin films syn-
thesized by chemical bath deposition method, respectively.
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3.2. X-ray photoelectron spectroscopy analysis studies

The elemental composition of the chemically deposited CuO was
further confirmed using XPS analysis to identify the oxidation and
elemental states of copper and oxygen. Fig. 2a shows the survey spec-
trum of the CuO functionalized with the optimized ionic liquid
HPDMIM(C1). The survey spectrum confirms the presence of copper,
carbon, and oxygen elements. Fig. 2(b–d) shows the high-resolution Cu
2p, O 1s, and C 1s spectra, respectively. The Cu 2p high-resolution
spectrum indicates the two peaks observed at 933.55 and 953.59 eV,
which related to Cu 2p3/2 and Cu 2p1/2, respectively. Similar observa-
tions have been previously reported [43]. Fig. 2c shows the O 1s high-
resolution spectra of the CuO samples, which include a peak at a
binding energy of 529.56 eV, which indicates formation of CuO thin
films [46–48]. Fig. 2d displays the high-resolution C 1s spectrum, with
a peak at a binding energy at 284.53 eV. Thus, the results of the XRD
and XPS analyses confirm the formation of CuO thin films without any

inorganic impurities.

3.3. Fourier transform infrared spectroscopy studies

Fig. 3(a, b) shows the FT-IR spectra of the CuO thin film and the
films functionalized with the optimized HPDMIM(C1) ionic liquid, re-
spectively. The characteristics peaks are appeared at 511, 599, and
688 cm−1. These peaks correspond to the CuO vibrations of the
monoclinic phase, indicating the formation of CuO [49]. Also, the ab-
sorption peak at 729 cm−1 is related to CueO stretching modes
[50,51]. In Fig. 3(a, b), similar vibration bands are observed at 876 and
1369 cm−1, which correspond to the CeC and CeO stretching vibration
modes, respectively [52]. Therefore, the FT-IR studies further sup-
ported the XRD results by confirming the formation of pure CuO sam-
ples.

3.4. Scanning electron microscopy studies

Fig. 4(a–h) shows SEM micrographs of the chemically deposited
ionic liquids and pure CuO nanostructures at two different magnifica-
tions. Substantial information regarding the surface morphology of the
pure CuO samples was obtained from the micrographs, wherein na-
nosheets-like and hybrid nanostructures appeared after the functiona-
lization with ionic liquids. Fig. 4(a, b) shows the foundation of the well-
arranged hierarchical nanosheets that appeared to be homogeneously
deposited over the steel substrate. These small interconnected sheets
create abundant space, suggesting easy electrolyte ion transport and
more superficial electroactive species [53]. In the case of CuO

Table 1
Crystallite size and EIS parameters of pure CuO thin films and functionalized
with different ionic liquids like HPDMIM (C1), DHPMIM (C1), MOCPP(C1).

Electrodes Crystallite size D
(nm)

Solution
resistance (RS) Ω

Charge transfer
resistance (Rct) Ω

Pure CuO 85 2.6 11
HPDMIM (C1):CuO 41 1.40 2.4
DHPMIM (C1):CuO 42 1.56 6.55
MOPP (C1):CuO 50 2.0 8.48

Fig. 2. (a) XPS survey spectrum, (b) high-resolution spectrum of Cu 2p, (c) high-resolution specrum of O1 s, and high-resolution spectrum of C1 s, HPDMIM (C1)
functionalized with CuO thin films, respectively.
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functionalized with the ionic liquid HPDMIM(C1), its morphology
substantially changed from nanosheets to hybrid nanostructures in
which nanowires were interconnected with each other to form a na-
noflake-like network (Fig. 4(c, d)); such a morphology should enhance
charge transport at the electrolyte–electrode interface. When the ionic
liquid DHPMIM(C1) was used to modify CuO, spherical nanoflake-like
CuO composed of large numbers of tiny flakes was formed (Fig. 4(e, f)).
This morphology offers a more reactive surface and is beneficial to ion
transport [54]. In addition, it produces a porous surface and crevices
that result in a large reactive surface for faster diffusion of electrolyte
when used in supercapacitor applications. No considerable difference
was observed in the morphology of the MOCPP(C1):CuO (Fig. 4(g, h)).
In summary, the treatment of CuO with ionic liquids considerably
changed the surface properties of the CuO thin films [55–58].

3.5. Electrochemical impedance spectroscopy studies

We conducted EIS to investigate the relationship between the in-
terfacial electronic properties of the Na2SO4 electrolyte and the
HPDMIM(C1):CuO, DHPMIM(C1):CuO, and MOCPP(C1):CuO elec-
trodes. The Nyquist plots show capacitive performance impedance
spectra for both CuO and the ionic-liquid-functionalized CuO electrodes
(Fig. 5). The inset shows the equivalent circuit, and Table 1 shows the
values of the solution resistance (Rs) and the charge transfer resistance
(Rct). Notably, the HPDMIM(C1):CuO sample exhibited lower Rs values,
displaying better conduction in the electrolyte and a low internal re-
sistance of the capacitor (Table 1). The Rct value for the HPDMIM
(C1):CuO electrode is also low compared with those for the other
electrodes, indicating better ionic conduction and greater electrolyte
diffusion to the CuO nanosheets [59–61]. For the pure CuO, HPDMIM
(C1):CuO, DHPMIM(C1):CuO, and MOCPP(C1):CuO electrodes, the Rs

values are approximately 2.6, 1.40, 1.56, and 2.0 Ω, respectively. In
addition, the Rct value for the pure CuO electrode (11Ω) decreased
after functionalization with the ionic liquids (Table 1). For the
HPDMIM(C1):CuO, DHPMIM(C1):CuO, and MOCPP(C1):CuO elec-
trodes, the Rct values are 2.4, 6.55 and 8.49Ω, respectively. These re-
sults demonstrate that the solution resistance and series resistance [55]
are lowest for the ionic-liquid-functionalized electrodes, suggesting that
the CuO electrodes offer greater interfacial area after functionalization

with the ionic liquids. All of these results are useful for increasing the
value of the specific capacitance related to the pure CuO electrodes.
They also suggest that the HPDMIM(C1):CuO electrode should exhibit
better performance in supercapacitor applications. In summary, we
conclude that the HPDMIM(C1)-functionalized CuO electrode exhibits
better capacitive behavior than the pure CuO, DHPMIM(C1):CuO, and
MOCPP(C1):CuO electrodes.

3.6. Cyclic voltammetry studies

Fig. 6(a, b) shows the CV curves and specific capacitance of different
ionic-liquid-functionalized CuO electrodes at a scan rate of 100mV s−1

in 1M Na2SO4 aqueous electrolyte, respectively. The specific capaci-
tance (Cs) measurements and CV curves indicate that ionic-liquid
functionalization resulted in CuO nanosheets with enhanced specific
capacitance. These observations are connected to the surface morpho-
logical alterations as well as porosity of the CuO thin films due to the
different ionic-liquids. After functionalization with the HPDMIM(C1)
ionic liquid, the CuO film exhibited a change in surface morphology
from nanosheets to a hybrid nanostructure composed of nanobuds and
3D-blades that, compared with other pure CuO nanostructures, should
offer additional electroactive sites, thereby increasing the current
density in a supercapacitor. The Cs of the CuO electrode was calculated
by the standard relation [62]:

∫=
−

C
mv V V

I V dV1
( )

( )s
c a V

V

a

c

(2)

where Cs is the specific capacitance (F g−1), v is the potential scan rate
(mV s−1), (Vc − Va) is the potential window (0 to +0.9 V), I is the
response current (mA), and m is the deposited weight of the electrode.
The maximum values of the Cs were found to be 60 F g−1 for the CuO,
198 F g−1 for HPDMIM(C1), 144 F g−1 for DHPMIM(C1), and 80 F g−1

for MOCPP(C1) at a scan rate of 100mV s−1 (Fig. 6b). The highest Cs

for the HPDMIM(C1):CuO electrode is attributable to its hybrid surface
morphology, where the addition of the ionic liquid increased the ionic
conductivity of the CuO electrode. Although the literature contains
numerous reports on the supercapacitor performance of CuO thin films,
none have focused on the effects of different ionic liquids on their su-
percapacitive behavior. For instance, Shinde et al. [55] synthesized

Fig. 3. (a) FT-IR spectrum of the pure, and (b) HPDMIM (C1) functionalized with CuO thin films synthesized by chemical bath deposition method, respectively.
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Mn:CuO/Cu(OH)2 thin films through a SILAR method and they reported
3% Mn doping shows the highest specific capacitance (600 F g−1).
Navathe et al. [61] deposited CuO thin film via a hydrothermal tech-
nique using different percentages of a 3-(10-hydroxypropyl)-1-methy-
limidazolium chloride [HPMIM(Cl)] ionic liquid with a specific capa-
citance of 60 F g−1. The enhancement in the specific capacitance of
nanobuds such as CuO hybrids are mostly attributable to the effective
utilization of the CuO because of the formation of hybrid nanos-
tructures.

Fig. 6c presents the CV curves of HPDMIM(C1)-functionalized CuO
at different scan rates (5–100mV s−1). Fig. 6d shows that the specific
capacitance decreases with increasing scan rate and that the HPDMIM

(C1) was a better ionic liquid for functionalizing the CuO to improve-
ment in supercapacitor performance [55,61]. The outstanding specific
capacitance value observed for the [HPDMIM(C1)]:CuO electrode is
attributed to its structural network and more abundant conductive sites
that led to the formation of the hybrid nanobud-like structures, which
in turn enabled fast charge transport during reaction between the
electrode and electrolyte.

3.7. Galvanostatic charge–discharge studies

To investigate rate capability, we evaluated the GCD performance of
the CuO functionalized with the HPDMIM(C1) ionic liquid at different

Fig. 4. SEM images of the (a) pure, and ionic liquid functionalized with (b) HPDMIM (C1), (c) DHPMIM (C1), (d) MOCPP (C1) with CuO thin films with different
magnifications, respectively.
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Fig. 5. Nyquist plots of the (a) pure, and ionic liquid functionalized with (b) HPDMIM (C1), (c) DHPMIM (C1), (d) MOCPP (C1) with CuO thin films, and inset show
the equivalent circuit as well as high magnified images of pure CuO and optimized sample, respectively.

Fig. 6. (a) CV curves of the (a) pure, and ionic liquid functionalized with (b) HPDMIM (C1), (c) DHPMIM (C1), (d) MOCPP (C1) with CuO thin films at 100mV s−1

with potential window 0 to 0.9 V, respectively, (b) Specific capacitance of the pure CuO and functionalized with different ionic liquids at 100mV s−1 scan rate,
respectively, (c) CV curves of the HPDMIM (C1) functionalized with CuO thin film at different scan rate from 5–100mV s−1 with potential window 0–0.9 V,
respectively (d) Specific capacitance of the optimized ionic liquid HPDMIM (C1) functionalized CuO with respect to the different scan rate.
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current densities (Fig. 7a). The charge and discharge curves shows the
charge and discharge shapes were approximately equal, confirming the
material’s pseudocapacitive behavior. Notably, the discharge curves for
the CuO electrodes functionalized with HPDMIM(C1) revealed the “iR”
drop is very low, indicating good electrical conductivity of the electrode
material. This behavior may be due to the incorporation of the
HPDMIM(C1) ionic liquid into CuO as well as the resulting unique
nanostructure [63]. Fig. 7b represents the specific capacitance of the
HPDMIM(C1)-functionalized CuO thin films with respect to the number
cycles at a scan rate of 5mV s−1. The entire CuO electrode exhibited
good cycling stability of approximately 89% specific capacitance re-
tention after 3000 cycles. A potential explanation for this cycling sta-
bility is the unique nanostructure and greater electronic conductivity of
the HPDMIM(C1):CuO electrode, which sustains the volume expansion
of the material during charge/discharge cycling [60–64].

4. Conclusion

In conclusion, we have successfully examined the effects of different
ionic liquids on the structural, morphological and supercapacitive
properties of nanosheet-like CuO hybrid electrodes synthesized through
CBD. Our obtained results shown the development of CuO electrodes
with substantial morphological variation. Furthermore, we observed
that the ionic liquid expressively changed the supercapacitor perfor-
mance of the CuO electrodes. The results showed that the HPDMIM
(C1):CuO electrodes with nanobud-like hybrid nanostructures exhibited
a high specific capacitance of 464 F g−1 at a scan rate of 5mV s−1. The
main approach proposed in the present work is easy and simple, where

the ionic liquid used for functionalization affects the electrochemical
performance and surface morphology of CuO films.
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